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We consider a stochastic dynamic system which is governed by a multidimensional
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OPTIMAL CORRECTION PROBLEM OF
A MULTIDIMENSIONAL STOCHASTIC SYSTEM

by
J. L. Menaldi*
Wayne State University

and

M. L. Taksart
Florida State University

ABSTRACT

:‘b’d’-" J

diffusion process with constant drift and diffusion coefficients. The correction corresponds
to an additive input which is under control. There is no limit on the rate of input into
the system. The objective is to minimize the expected cumulative cost associated with the

position of the system and the amount of control excerted.

It is proved that Hamilton-Jacobi-Bellman’s equation of the problem has a soiution,
which corresponds to the optimal cost of the problem. An existence of optimal policy is

. proved.

* Supported by NSF Grant DMS 86-01998.
t Supported by NSF Grant DMS 86-01510 and Air Force Office of Scientific Research

Grant 87-0278.
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1. INTRODUCTION

-
s el

This problem is motivated by studies of a dissipative system under uncertainty. A
typical model would be an automatic cruise control of an aircraft subject ot uncertain wind
N conditions. The problem is to balance costs associated with deviation of the airplane from

the prescribed course and fuel expenditures resulting from the correction of the course.

4 We assume that in absence of control the fluctuations of our stochastic system are
? described by a multidimensional Brownian motion with constant n-dimensional vector -
¥

drift ¢ and n x n diffusion matrix o.
'§
LY
o yz(t) = z + gt + ow(t)

'y Here z is the initial position, and w(:) is a n-dimensional standard Brownian motion

1Y on (Q,?,}},P)

The "quality” of the position of the system is measured by a function h. We assume

that h is a strictly convex nonnegative function such that

h(z)/|z] = 00 as |z| — co.

The control is realized by 2n increasing, #;-adapted processes v (t),v7 (t),7 = 1,2,...,

¢ n. The control functional v(t) is a n-dimensional F;-adapted process of bounded variation
: defined

)

2 S v(t) = (vi(t), v2(t),. .., va(t)), (1.1)
"

§

N vi(t) = vt (t) — v (2). (1.2)

The dynamics of the system under control is then

o
&)
‘ 1
¥
=
)
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.,’?" (" 'J"f'f MRS 'Y W LR D S D AT TR D TP A T R IR fe e ate e A L
st T T Y o T R B N A LR T ST R




X} N o M W ahra A% At Abo Al tad valk ot ol tal Dol tal ta) Sad Soh Gl Vol fol Sk 20 LA A’k oa A Avh A At ath ot ot pfd ot ietoBh oRA A= Aat fui et Bat Sas San Sat Bal lod Sk g

Yz(t) = z + gt + ow(t) + v(t). (1.3)
- With each initial position £ and each control functional v we associate a cost
' 1(v) =E{ / e=h(y, (£))dt +
0
) " - - (1.4)
Z[a,-/ e~ tdvt(t) + b.'/ e~ *dy; (t)] },
1 =1 0 o

where a; and b;, 1 = 1,2,...,n are positive constanst and a > 0 is a discount factor.
y Denote by V' the set of all n-dimensional % -adapted processed v represented in the form

(1.1), (1.2). We are looking for

' : u(z) = inf{J (v): v e V} (1.5)

and v* such that

2 u(z) = J.(v*). (1.6)

Let

and v-:(a—‘;,-é%’-,...,dz ). Put

. o
i :"Ezz 16161:1—;9' L Tes

(1.8)

tr(co*v?) - g v +e.

For ¢ = (¢1,92,...,9n) €R™ let ||| = max|g], Put
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q
Blg) = P S Z:[“fi(ai + @) — n:(b — g:)) (1.9)
flelllnll<t =1
Note that
B(g) >0and B(g)=0iff —a; <gq;<b;,t =1,2,...,n. (1.10) "

We will show that the optimal cost function u given by (1.5) satisfies that following

Hamilton-Jacobi-Bellman equation

max(Au — h,y(vVu) - 1) =0, (1.11)

where (g) = max;<i<a|(¢F /a:) V (¢ /b:)], and we prove the existence of the optimal cost.

In section 2 we consider a family of problems in which the allowable controls are ab-
solutely continuous with the rates uniformly bounded. We derive estimates for the cost
functions of these problems. In section 3 it is shown that a subsequence of cost functions
for absolutely continuous control problems converges to u(z) given by (1.5). Section 4 is

devoted to construction of the optimal policy.

2. Absolutely continuous control problems.

Here and in sequel we assume that the function h is strictly convex and roughly speaking

is of polynomal growth. More precisely there exist p > 1 and constants Co,C; and C,

such that for any 0 < A < 1, any z ¢ R™ and any z’ such that |z/| <1, <
0 < h(z) < Cy(1 + |z])7, (2.1)
Ih(z) — h{z + z')| < C1(1 + h(z) + h(z + 2'))'~""" |2'], (2.2) )




0 < h(z + Az') + h(z - Az') — 2h(z) < C2A(1 + h(z))%, g=(1— §)+. (2.3)

Let V, be the set of all v ¢ V such that

u(t)~ = /tu'(s)ds, lv(s)] <e™! forall s>0, (2.4)
0
and
u.(z) = ui{l‘;‘ J(v) (2.5)

Formal application of the dynamic programming principle yields the following equation

Au, +e718(Tu,) =h (2.6)

(see Fleming and Rishel (1975)). The next theorem establishes the properties of u, which

will be used in sequel.

(2.7) Theorem. Suppose h(z) satisfies (2.1) - (2.3). Then there exist Co,Cy,C, indepen-
dent of €¢(0,1] such that for each Xe(0,1) and each z’ with |z'| < 1 the function u.(z)
satisfies (2.8)-(2.10) below

0 < u,(z) < Co(1 + |2z|)7, (2.8)
|ue(z) — ue(z +2')| < Ci(1 + [z] + | + 2')7~ 2], (2.9)
0 < u,(z 4 Az') + u (z — Az') — 2u,(z) < C22%(1 + |z}) (=27 (2.10)

Moreover (2.8)-(2.10) is also true for u.

\ L O T T T AT AT AT R R A AP LA A S L SRR (L NP
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Proof 1°. Putting v = 0, we get from (2.5)

uelz) <2.(0) = B{ /o ~ e th(z + owl(t) + ot)at)}
X | SE{ /oco e~ *Co(1 + |z + ow(t) + gt]”)dt}

©o
<Coa~! + COE{ / e |z +ow(t) + gt]")dt}
0

<Coa~! + Coa~le|z/?,

where ¢ is a constant dependent on a,0 and g. Putting Co = Coa~? max(1,c), we get

: (2.8).

2°. Consider

ue(z) —us(z+2') = istup Jz(v) = Jayar (V')

<sup Jpqor (V) = o (V') = sup Jo (V) = Joyar (V).
Likewise u,(z + ') — u,(z) < sup, Jz42+(v) — J.(v). Therefore
|ue(z) — welz + z)| < sup |Jo(v) = Jopar(v)]

<sup B{ [ e h(uelt) - hlyara ()t}

- -

<sup CoB{ [ 114 h(ue(t) ~ hlymar )17
’ ’ (2.11)

(y=(2) - (yz+z'(t)]c-°‘dt}

R X R

e o]

<Cule'la7 sup( | / 1+ k(g (1)

Fh(yarar (1)l tde )00,

by + > > -

The last inequality in (2.11) is due Hélder’s inequality. By virtue of (2.8), we can consider
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only those in (2.11) v for which E_f(;"o h(yz(t))e~=tdt < Co(1 + |z[)P. Therefore, applying

Holder’s inequalitity to the last line of (2.11) once more,

Jue(z) —u.(z+ 2')| < |z'|Cra~ (2 + Co/a)(1 + |z| + |z + ) L

whereas (2.9) follows.

3°. Since h is a convex function, the function J;(v) is convex in (z,v). Because V, is a
convex set the function u,(z) is convex as well. Therefore the first part of the inequality

(2.10) follows. Put z; = z+ Az',z, =z — Az’

ue(z + Az') + ue(z — Az') — 2u,(z)

=inf inf sup{J,, (v1) + Jz, (v2) — 2J:(v)}

vy vis v

< sx:p Iz, (V) + Joy (v) — 2J:(v) (2.12)

: SE{/OO e~ CyA?(1 + h(y.(1)))%dt}.

If ¢ =0 then (2.12) implies (2.10) in an obvious manner. If ¢ > 0 (that is p > 2) then by
Holder’s inequality

E{ /0 " et (1 4 h(ya(1)))%dt

o0

<([Teeta)™ (5] [T e ney) T @8

<a~?(a™ + Co(1 + |a|)7) 0= 2/F
The last inequality in (2.13) is due to (2.8). Simple analysis show that (2.13) implies (2.10)
The proof of (2.8)-(2.10) for u is the same.

(2.14) Theorem. The optimal cost u(z) is the unique solution of (2.6) under the conditions

(2.8)-(2.10).

i )
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Proof 1°. For a nondegenerate o the existence of a solution follows from the classical
results (see Fleming and Rishel (1975)). If o is degenerate then consider o5 = [0, §1] which

is a 2n X n matrix. Note that

0505 = 00* + 621

is nondegenerate for all sufficiently small §. Consider a new optimization problem in which
w in (1.3) is a 2n-dimensional standard Brownian motion while o is replaced by os. Let

u,,s be the corresponding optimal cost given by (2.5). Then u, s satisfies

52
—7 V tues + Au“g + e'lﬂ(Vu,.g) =h (2.14)

Repeating step by step the proof of the Theorem (2.7), we can see that (2.8)- (2.10) hold with
Co,C1,C5 independent of § > 0 for all sufficiently small 6. If follows that u, s(z), Yu,. s(z)
and Au,s(z) is locally uniformly (in 6) bounded in z. The latter implies existence of a

subsequence §; — O such that { A u, s, (z)| is locally bounded in z and

Ue5 (2) — ue(z),

Ve s, (:1:) d V“‘(I)’

locally uniformly in z and Au,s, — Au, as a distribution (in Schwartz’ sense). Passing to

a limit in (2.14), we get the validity of (2.6) for u,.

2°. To prove uniqueness assume that there are two solutions u, and v, of (2.6). Let

1 9? d
Ao = 3 ‘Z;aijm - 2,.:9‘-67;'

(Recall A = Ag + aI). Then

Ao(ue — v.) = —alu, — v,) + €7 HB(Vve) — B(Vue)). (2.15)
7
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Let W(z) = u.(z) —ve(z) and w(z) = W(z)y(z, A), where ¢(z,)) = (A+]z|?) P (the value

for the constant A will be chosen later). If follows from (2.8) that w(z) — 0 as |z] — oo.

Suppose w(z) # 0 and w(z) > 0 for some z. (If w(z) <O then consider v, — u,).

w(zo) = max w(z) > 0.

Calculations show that

Ao¥(z,A) + [tr(oo® v ¥(z,A) v ¥(z, A)*)]/¥(z, A) = 6(z,A)¥(z, A),

where sup, |6(z,A)] — 0 if A — 00, and

B(vve) — B(Vue) = 1(z,€)[Vve — Vue] = —1(z,€) v W(z),

where ||v(z,€)|| < 1. In view of (2.16), Yw(zo) = 0. Therefore

VW (z0)¥(z0,A) = —W(z0) V ¥(z0, A).

and

VW (z0) = =W (z0) V ¥(z0, A)/¥(z0, A).

Since V¢(zo,A)/¥(z0,A) — 0 as A — oo, we can combine (2.20) and (2.19) to ge*

B(Vve(z0)) — B(Vue(z0)) = W(z0)b(e, ),

where supg,<; 16(€,A)] = 0 as A — oco. Also,

AotU(Io) = AoW(IZo)II)(Io, /\) + W(Io)A0¢(Zo, /\) - tf(O’U‘ \V/ W(.’Co) \V4 111(.’1:0, /\))

Let

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.22)




Applying to the first term in the nght hand s.oe of 220 e L

4 (2.21), (2.17) and (2.19), we get

! Aow(zo) =|-aW (z¢) + €~ XM'(I(,)A‘(L/\))L‘(I.—,,/} - W a4

b —tr(oo®(— W ¥(z0, A )W (24) U v(z0 A) vz -

=W (zo)¥ (2o, A)(-a + €~ Lé (e, A) + 8z A
S
Now choose A > 0 such that —a+e " '6(e,2) + (x4, A) < O Inview of 216 1.

b

S this implies w(zo) < 0 which is in contradictior. with (2.16).

o 3. Solution of the Hamilton-Jacobi-Belllman equation

>,

X Passing to a limit in (2.6), as € — 0 (and assuming for a moment convergerce of u,.° o,
\

- and Au, to u,Vu and Au respectively), we get inequalities

. Au(z) < h, (3.1)
)
1]
: —a; < Vu;(z) < b;. (3.2)
p

. Assuming also that at each point z at least one of {3.1) and (3.2) is tight, we get (1.11).
. In this section we will show that u given by (1.5) is actually a solution of (1.11).

’

o

a (3.3) Theorem. There exist c;,c2 > 0 such that

, calz] < u(z) < ea(1 + Ja). (3.4)
)

¢

: Proof 1°. For z¢R™ put

<

: 1zl -z, ifla]> 2

z/lz| -z, if |z ,
I n(z) = { ,
0 otherwise.

r- Let
- 9
‘e

v
b
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: Uz(t) = ’T(x)llzl>2 + E 7(Ze,)s (3.5)

<t i
where
T0 = 0,
' k-1
T =inf{t > r—y : |z + gt + ow(t) + Z | = 2}.
n=1

The policy £.(t) acts in the following manner. When the process is outside the ball
of radius 2 it is instantaneously moved inside the ball of radius 1. Then there is no action
until the process reaches the boundary of the ball of radius 2, at which moment it is moved

again into the ball of radius 1 and so on. Let

U(z) =E{ /0 " etz 4 gt + owlt) + Do (t))dt

oo n

+ Y& 3 [as(Baire) — Dus(r))

k=1 =]

b.-(am.-(rk)—az,-(r,:))-]}, it |z] < 2.

. Then

J

'Y

|

v U(z) if |z] < 2,

' 1.(5) = ) . o (3.6
Ulz/l2)) + Xica(as(z/ 2] = 2)F + bil=/l2ls — 2)7), if 2] > 2.

M It is easy to see that U(z) is a continuous function and therefore bounded in {z: |z] <

2}. Thus formula (3.6) implies that for £, given by (3.5), Jz(P;)/|z| is bounded, whereas

the second inequality in (3.4) follows.

2°. Let a = min(a; A b;,1 =1,2,...,n). Let

-t g m. e N’

\ Ar={|gt +ow(t)] <R forall 0<t<1}

10
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Choose R such that

1
P(AR) > 5’

- g P A

and

h(z)/|z| > a for all |z] > R. (3.7)

Let |z| > 3R and v be any policy.

Put B = {Jy:(t)] = |z + gt + ow(t) + v(t)| > |z|/3 for all t <1}. Then

7.0 26 B{ [ M)t + a3t ) 47 (0]} 2

=1 o

(3.8)

c'lE{/o h(ya(t))1pdt + ag[u;"(l) Fu7 ()1 - 1)) a0 -

We have 1ph(y.(t)) > 1pa|z|/3 by virtue of (3.7). On Ar the quantity |z + gt + ow(t)]
exceeds 2|z|/3 for all ¢t < 1. Therefore on BN Ag

(vt (1) + 47 (1)) > Jal/3.

Hence (3.8) exceeds

1
d B [ (alel/D1mat + (al2l/D)1 - 12)1an) } 2 €7 alalBP(AR) 2 ¢ alel 6 (39

Inequality (3.9) implies the first inequality in (3.4).

(3.10) Theorem. There exists a constant ¢ and a sequence € | 0 such that for any R >0

there exists N such that for every k > N

. .\ \ \'. \{:{_;.."'.."-_." -‘; ..~ ..' &St .’; LI '_. AR .‘; ---------- .: .-.'4-_‘ ‘:-
I S A . I A -_.‘lL'Jﬂ..ﬁ_..‘_'I_.AAAA e gt T e e T N e




ue,(z) < e(1+|z]) forall |z| < R.

Proof. Consider a space V

_ i V={v:vel],|vv|eLi},

where ¥ = (A + |z|2)"7~", ) = (A + |z|2)~P~"+! and L2 denote the set of functions v on
R™ for which v2y is integrable. '

Inequalities (2.8)-(2.10) show that u,(z), Vu.(z) and ||a—’(.‘,‘-;£ﬂ|] are uniformly bounded !
in € on every compact subset of R™. Also the same inequalities show that u, is uniformly
bounded in L3,| v u,| is uniformly bounded in Lé and ”a_’;ﬂﬂ” is uniformly bounded in

L@ . Hence there exists a function ugeV and a subsequence €, such that

u,, — uo weaklyin V, (3.11)

Au,, — Aug weakly in Lﬁ (3.12)

and €;'#(Vue,) = h — Au,, is bounded in L3. Therefore

klim B(Vue,) =0. (3.13)

Since convergence of Vu,, is locally uniform, by virtue of (1.10), for very R there exists

N such that for every k > N

—a; — 6 < Vugi(z) <b;+ 6 forall |z]<R. (3.14)

Since u,,(z) is monotonically decreasing, (3.14) implies the statement of the theorem.
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(3.15) Proposition. Let Vo denote the set of v ¢ V such that v(0) = 0. then

u(z) = vi?\;o Jz(v).

Proof 1°. We may consider only those v for which J,(v) is finite. First show that
in the mimimization problem (1.5) we can consider only those v for which there exists r

(possibly dependent on z) such that

v(0)] < r as.. (3.16)

Let £, be a policy given by (3.5) for which J;(©z) < ¢2(1 + |z]). For any policy v and

initial state = consider a policy

) — { v(t) if p(0)] < r,

Dg(t) if v(0)]>r.
If |r] > |z| then |v7(0)] < r. Using the first inequality in (3.4),
J2(v) = J=(v7) 2 E{ealy=(0)] — c2(1 + |=z]); |v(0)| 2 r}
(3.17)
2 (ea(r — |2]) — e2(1 + |2])) P(|v(0)| > r}.

Ifr>(1 + |z|)e2/e1 + |z}, then J (v7) < J (v) while |v7(0)| < r.

Likewise, we can show that every policy is dominated by the one for which for every

stopping time 7

v (y=(7)) = v{ya(r=))| < (1 + lya(r=)l)ez/e1 + ly=(7-)]. (3-18)

2°. Let v be any policy subject to (3.16) and (3.18) and let

o fr(® ift>e,
Pltse) = {V(O)t/s +y(t)(t—€)/e ft<e.

13
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Let §j; be the trajectory corresponding to &(t;6) and

r=inf{t:[o(t)] >r+1 or |G(t)] > |z|+r+1)

) o(t;e), ifr>e, or if r<e and t<r,
vit;e) =
( Ugur)(t~1) + D(ri€), ifr<e and t>r,

where ¥ is given by (3.5). Let y,(t) be the trajectory corresponding to v and y=(t;€) be
the trajectory corresponding to v(-;€). Then, v(t,e) = v(t) forall t > £ on {r > e}. Also,
in view of (3.16)

P{r<e} =0 as e—0. (3.19)

Consider

[Jz(v) — J(v(-€))| < E{/:h(y,(t))c"“‘dt;r > e}

+ E{A‘h(y,(t;e))c‘“‘dt;r > e} + E'{/:o h(yz(t))e~*dt

* f;[“‘ /om et (1) + b /0 Tt ®]ir < e} + B /0 " h(gate))e™ "
n o) oo \
. ~at :f B . —at - . . i
+Z[a./o e~ **dy; (t,e)+b,/(; e” *dy; (t,e)],r_<_s}

+ [E{iz::la;(‘/: e"tdvt(t) — /: e~ dvit(t;€));r > e}l i

+ IE{zn: b;(/o‘ e"**dv (¢) —/ e~ *tdu (t;€)); 7 > e}]

[
=1 0

=h+I+ I3+ 14+ Is + 1.
(3.20)
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o The term under expectation in I; is majorized by fo°° e~ th(y.(t))dt which has finite
o mean by assumption. Thus I; — 0 as € — 0 by virtue of the dominated convergence

theorem. Since y.(t;€) = §(t) on {t <}, we have

i

8

" ly=(t;€)| = |§=(t)] < |z| +r+1 on {t<e<r7).

;

;:: Therefore I; does not exceed E{Me;r > €} < Me whereM = maxXy(<|z|+r+1 2(Y)-

W -

K

:: By assumption J.(v) < oo therefore, by virtue of (3.19) and (3.16) and the dominated
- convergence theorem, Is — 0. By virtue of (3.18)

luz(m;e)| < Jz|+r+ 1+ (14 |z] + 7+ 1)c2/cx (3.21)
N

% In view of (3.6) and the strong Markov property for y.(-;€), we get that I, does not exceed
. E{Me + c2(1 + |yz(7;€)|);7 < €}. Therefore (3.19) and (3.21) imply Iy — 0 as € — 0.
- On the set {r > €} the functional v (t),t < ¢ is bounded by |z] + r + 1. Likewise for
%
K vit(t;€). Straightforward verification shows that both [ e~*tdv}(t) and [, e~ *tdu}(t;¢)
U
" converge to v(0) as € — 0. Therefore by the bounded convergence theorem Is — 0 as
U
: € — 0. Similarly for Ig.
z I

Iy et V'=),50Ve

2

' (3.22) Theorem The set V' is dense in V, that is
llv.
» inf J,(v) = inf Jo(v).
n::, veVy
" Proof 1°. Let veV such that J,(v) < oo.

;. Put

4

P

% ) 0, f0<t<S$,

g V; t,8) =

. (t,) 6‘1f:_6 min(vF(s),6~ )ds, ift > 6.
"
4 15
W
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It is obvious that v(t;6) = (v{(t,6) — vf (8,6),...,v}(t,6) — v (t,6)) is a continuous
functional with
lv(t,6)] < né~3.

It is also clear that

vE(t;6) < v () (3.23)

and v(t;6) — v(t) as § — O for all ¢ except possibly a countable set of the points of
discontinuity of v. To justify convergence of J.(v(:,6)) to J.(v) we, however, need several

extra steps as well as a further modification of (-, §).

Proof 2°. Let y, be the trajectory associated with v and y’ be the trajectory asso-
ciated with v(,8) and let

rr =inf{t : [y.()] 2 B},
& =inf{t : |y3(1)| > R).

Fix R. By virtue of the Theorem (3.10) there exist € > 0 and n.(t)eV, such that

Jz(nz) < ¢(1+|z]) forall |z|] <4nR. (3.24)

For every 6 less than ¢ above, put

o(R) =1 A ‘rfnR Ainf{t: m‘_axu;*(t) Vm:jzxu,-"(t) =N}

(the constant N will be chosen later) and put

U(t,&), ift<0(R),
7o) = {V(U(R),&) + 'lf«,m(‘ —o(R)), ift2o(R).
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The policy 5(t,6) coincides with policy v(t,8) which approximates the original policy v

PN S W

until either the process |y (t)| reaches R or the process |y2(t)| reaches the level 4nR or one
of the control functionals v¥(-) exceeds N. After that p(-,6) switches to the policy whose

:: expected cost grows with z at the rate not exceeding |z|. It is obvious that v/(-,6)eVs. In
)
:', the sections 3° and 4° we will show
Y —
,:‘ Jim J.(0(-,6)) < J(v). (3.25)
R—o0
Fe
3°. From the definition of v(-,§) it is clear that
vE(t-) < TmuE(t,8) < vE(2).
N 50
] Similarly if ¢, — ¢
L]
vE(t-)< Tim v¥(ta.6) < vE(2). (3.26)
- 5—0,2,—1t
Suppose that with positive probability
lim7{ p < 7. (3.27)
4 §—0
y
g Let w(t) be the trajectory for which (3.27) holds. Then there exists a sequence 6, 1 0
} and a bounded sequence t,, < rg such that
N
N
lvi2 (ta)] > 4R. (3.28)
)
By choosing a subsequence if necessary, we may assume t,, — t. Since lyz:i(ty)] < R
s
: on {t, < tr}, (3.28)) implies
li.._m Iy::(tn) - yzi(tn)l = b_.m iU.'(t,.,&n) - Ui(tn)l > 3R. (3'29)
n — 00 n— oo
o 17
"
"
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However v; is continuous from the right and has left limits. Therefore

viE(t-) < lim v (ta) < vE (). (3-30)

Inequality (3.30) and (3.26) show that

Bmlvs (tn, 8) = wilta)] < () — vi(t-)] (3.31)

however, |vs(t) — vi(t—)] = |¥2i(t) — yzi(t=)] < 2R on the set {t < rg}. The latter
contradicts to (3.31) and (3.29). Therefore the probability of (3.27) is null.

4°. For any policy v put
t n t t
jz(t, U) = / c—ath(yz(t))dt -+ Z[d,‘/ c—“tdy‘f"(t) + b‘/ C—atdlli- (t) )
Y =1 o 0
Since 7r T 00 as R — oo, we can apply the dominated convergence theorem to obtain

Jo(v) = lim E{j.(re,v)},

which implies 1

R]xm E{jz(oo,u) _jz(TRsV)} = 0.

Applying the strong Markov property for y.(-) and the first part of the inequality (3.4), we
get

E{e"™cR} < E{e""c|yz(7r)]} =0 as R — oo. (3.32)

Consider

18
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Jz (17(-, 6)) =E{jz(°°’ D('a 6))}

(3.33)
= E{jz(o(R),0(-, 6))}+E{jz(00, 7(-, 6)) — jz(c(R), p(:,6))}
In view of (3.32) there exists R such that
¢(1+4nR)E{e ™"} <e. (3.34)
Then choose N such that
¢(1 4+ 4nR)P{max v} (rr) Vmax v (1r) > N} < e. (3.35)
since (3.27) does not hold a.s.
o(R) = tr Ainf{t : max v} (t) vmaxy () = N} =¢, as 6§ — 0.
Since (t,6) — v(t) for all t < ¢ except a countable number of ¢
Jz(o(R),o(,6)) — 3z(s,v). (3.36)

Moreover the convergence in (3.36) is bounded because |y.(t}] < R and |yi(t)]| < 4R
and vE(t;6) <vE(t) < N if t < o(R). Therefore

lim E{jz(0(R),5(,6)} ~ E{ja(6,)} € Jev). (3.37)

In view of (3.24) and the strong Markov property for y¢ the second term in (3.33) does

not exceed

19




¥ E{e*"®e(1 + lyi(o(R))])}

< ¢(1 +4R)E{e”*"(R)}

e
3 ? © <e(l+4R)[E{em>" 5 = o(R)}
M
K
; +E{e > ®);rp > rf-} (3.38)
]
iy
e +E{e=" ;15 > ¢}
L
o,
! <c(l+4R)E{e”*""} +¢(1 + 4R)P{rg > rlp}
. +¢(1+4R)P{rg > ¢}.
‘: The first term in (3.38) does not exceed € by virtue of (3.34). Since (3.27) holds with
probability zero the second term in (3.38) can be made smaller than € when § is suficiently
)
3 small. The third term in (3.38) does not exceed € in view of (3.35). In view of arbitrariness
-4 of €, we get (3.25). The statement of the theorem is a trivial consequence of (3.25).
- (3.39) Corollary. For every z
r. _—
:
- ‘li_r.r%)u,(x) = u(z).
"
' The proof of this theorem follows from Proposition (3.15) and Theorems (3.22).
)
i (3.40) Theorem. The optimal cost u given by (1.5) satisfies (1.11).
14 Proof. The proof of Theorem (3.10) shows that there exists a function uo for which
3 (3.11) and (3.12) hold.
W - Since fB(q) is a continuous function of ¢ and Yu,, — Vu we have
N
M
"
Ay
: B(Vue) =0 (3.41)
: and in view of (1.10) we get (3.2). From (2.6)
i 20
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Au, <au,+e718(Vu,) =h

and it follows (after passing to a limit as ex — 0)

AuOSh

Suppose v(Vuo(zo)) < 1, that is

—a; < Yup(zo);i < b; forall 1<i<n. (3.42)

By virtue of the continuity of Jup, the inequality (3.42) is true for all |z — zo| < 6 for
some & > 0 since convergence of Vi, to Vug is locally uniform (see the proof of Theorem
(3.10)) the inequality (3.42) is true for yu,, for all |z —z¢| < 6 and all k sufficiently large.
For such k

Au.,‘ - h

and, passing to a limit as k — oo,

Aug = h, (3.43)

that is 7(Vu) < 1 implies (3.43). In view of corollary (3.39), v = limu,, hence uo = u and

the theorem is proved.

4. Construction of the optimal policy

Let

Dah(z,y) = (h(z) + h(y))/2 - h((z + 1)/2). (4.1)
21
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By virtue of (2.3)

Agh(z,y) >0, if z#y. (4.2)
(4.3) Theorem. The optimal policy v* (if exists) is unique.

Proof. Suppose there are v} and v} for which (1.6) is true. Let yl(t) and y2(t) be the

corresponding trajectories. Put v = (v} + 15)/2 and y.(t) = (v1(t) + y2(t))/2. Then

u(z) — Jo(v) =(J(v]) + Jo(v3)) /2 = Ja(v)
(4.4)

25{ [ e Dahui0Z(0)ee).

By virtue of (4.2) the right hand side of (4.4) is strictly positive if v and v are not

equal a.s.

Let mr be a measure on ([0,T] x 02,B[0,T) x ¥) equal to the product of Lebesgue

measure and P.
(4.5) Theorem. If
Jo(vk) = u(z) as  k— oo, (4.6)

then vi(t,w) converges in measure mr.

Proof. 1°. Let y* be the trajectory corresponding to vy . then

T
E'{‘/0 lly:(t)>N|dt} —0 as N - oo (4.7)

uniformly in k. Really

22
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Jz(vk) Ze""TE{/T

0

h(yf(z))dz}
i (4.8)
>eeT inf h(z)E{/o Lysor>nt }-

Because J,(vx) is uniformly bounded in k and limy_.o infiz|>n h(z) = oo, we get

(4.7).

2°. We need to show that for any € > 0

T
E{‘/0 lly:(t)—y;“(tH)‘dt} — 0 as m,k — 00. (49)

Suppose that the expectation in (4.9) is greater than 6 > 0 for all m and k (or for all
m and k from a subsequence). Let N be such that the expectation in (4.7) is less than 6/2
for all k. Then

(Jz(ve)+Jz(vm)) /2 = T ((vk + vim)/2)

T
> e“‘TE{/ Azh(yi"(t),yf(!))liy:(zHSNllv:"(”ff”}d'
0

(4.10)
T

Ze‘“Tp(e,N)E{/o 1ly:(t)—yrm]nllyr(zn@'1;v;"(f%f”d’}
-aT
e”*"p(e,N)é/2,

where p(e,N) = inf|z_y1>e502) |y <N Agh(z,y). (Usual continuity/compactness arguments
show that p(e,N) > 0 for any N). Inequality (4.10) and (4.6) imply KmJ, ({v + v,,)/2) <

u(z) and we come to a contradiction.
(4.11) Corollary. There exists an optimal policy v*.

Proof. Taking a sequence vy for which (4.5) is true, and using a diagonal method, we can

find a subsequence vy, which converges a.e. mr for each T > 0. Usual argument show an

existence of v such that

23




& | v(t,w) = limvg,, (¢, w) (4.12)

for Leb x P almost all (t,w). By Fatou’s lemma

v e o

5
S

im J(v,,) 2 J.(lim(vg,,)) = Jz(v)-

o Thus J.(v) < u(z). Therefore v given by (4.12) coincides with v*.
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